Reducing Frame Rate for Object Tracking
نویسندگان
چکیده
Object tracking is commonly used in video surveillance, but typically video with full frame rate is sent. We previously have shown that full frame rate is not needed, but it is unclear what the appropriate frame rate to send or whether we can further reduce the frame rate. This paper answers these questions for two commonly used object tracking algorithms (frame-differencing-based blob tracking and CAMSHIFT tracking). The paper provides (i) an analytical framework to determine the critical frame rate to send a video for these algorithms without them losing the tracked object, given additional knowledge about the object and key design elements of the algorithms, and (ii) answers the questions of how we can modify the object tracking to further reduce the critical frame rate. Our results show that we can reduce the 30 fps rate by up to 7 times for blob tracking in the scenario of a single car moving across the camera view, and by up to 13 times for CAMSHIFT tracking in the scenario of a face moving in different directions.
منابع مشابه
Using a Novel Concept of Potential Pixel Energy for Object Tracking
Abstract In this paper, we propose a new method for kernel based object tracking which tracks the complete non rigid object. Definition the union image blob and mapping it to a new representation which we named as potential pixels matrix are the main part of tracking algorithm. The union image blob is constructed by expanding the previous object region based on the histogram feature. The pote...
متن کاملAn Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm
In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملVisual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot
The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...
متن کامل